Integrating a fuzzy k-means classification and a Bayesian approach for spatial prediction of landslide hazard

نویسندگان

  • Pece V. Gorsevski
  • Paul E. Gessler
  • Piotr Jankowski
چکیده

A robust method for spatial prediction of landslide hazard in roaded and roadless areas of forest is described. The method is based on assigning digital terrain attributes into continuous landform classes. The continuous landform classification is achieved by applying a fuzzy k-means approach to a watershed scale area before the classification is extrapolated to a broader region. The extrapolated fuzzy landform classes and datasets of road-related and non road-related landslides are then combined in a geographic information system (GIS) for the exploration of predictive correlations and model development. In particular, a Bayesian probabilistic modeling approach is illustrated using a case study of the Clearwater National Forest (CNF) in central Idaho, which experienced significant and widespread landslide events in recent years. The computed landslide hazard potential is presented on probabilistic maps for roaded and roadless areas. The maps can be used as a decision support tool in forest planning involving the maintenance, obliteration or development of new forest roads in steep mountainous terrain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Prediction of Landslide Hazard Using Fuzzy k-means and Dempster-Shafer Theory

Landslide databases and input parameters used for modeling landslide hazard often contain imprecisions and uncertainties inherent in the decision-making process. Dealing with imprecision and uncertainty requires techniques that go beyond classical logic. In this paper, methods of fuzzy k -means classification were used to assign digital terrain attributes to continuous landform classes whereas ...

متن کامل

Developing a Model Based on Geospatial Information Systems (GIS) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for Providing the Spatial Distribution Map of Landslide Risk. Case Study: Alborz Province

Landslide is one of these natural hazards which causes a great amount of financial and human damage annually allover the world. Accordingly, identification of areas with landslide threat for implementation of preventive measures in order to confront against the instability of hillsides for reduction of potential threats and related risks is very important. In this research a new method for clas...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

Bayesian Analysis of Survival Data with Spatial Correlation

Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study‎. ‎One of the most important issues in the analysis of survival data with spatial dependence‎, ‎is estimation of the parameters and prediction of the unknown values in known sites based on observations vector‎. ‎In this paper to analyze this type of survival‎, ‎Cox...

متن کامل

پهنه‌بندی خطر زمین‌لغزش با استفاده از تئوری بیزین

The aim of present research is landslide hazard zoning using Bayesian theory in a part of Golestan province. For this purpose, landslides inventory map was created by landslide locations of landslide database (392 landslide locations). Then, the maps of effective parameters in landslide such as slope degree, aspect, altitude, slope curvature, geology, land use, distance of drainage, distance of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Geographical Systems

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2003